The First 35 Amino Acids and Fatty Acylation Sites Determine the Molecular Targeting of Endothelial Nitric Oxide Synthase into the Golgi Region of Cells: A Green Fluorescent Protein Study
نویسندگان
چکیده
Catalytically active endothelial nitric oxide synthase (eNOS) is located on the Golgi complex and in the caveolae of endothelial cells (EC). Mislocalization of eNOS caused by mutation of the N-myristoylation or cysteine palmitoylation sites impairs production of stimulated nitric oxide (NO), suggesting that intracellular targeting is critical for optimal NO production. To investigate the molecular determinants of eNOS targeting in EC, we constructed eNOS-green fluorescent protein (GFP) chimeras to study its localization in living and fixed cells. The full-length eNOS-GFP fusion colocalized with a Golgi marker, mannosidase II, and retained catalytic activity compared to wild-type (WT) eNOS, suggesting that the GFP tag does not interfere with eNOS localization or function. Experiments with different size amino-terminal fusion partners coupled to GFP demonstrated that the first 35 amino acids of eNOS are sufficient to target GFP into the Golgi region of NIH 3T3 cells. Additionally, the unique (Gly-Leu)5 repeat located between the palmitoylation sites (Cys-15 and -26) of eNOS is necessary for its palmitoylation and thus localization, but not for N-myristoylation, membrane association, and NOS activity. The palmitoylation-deficient mutants displayed a more diffuse fluorescence pattern than did WT eNOS-GFP, but still were associated with intracellular membranes. Biochemical studies also showed that the palmitoylation-deficient mutants are associated with membranes as tightly as WT eNOS. Mutation of the N-myristoylation site Gly-2 (abolishing both N-myristoylation and palmitoylation) caused the GFP fusion protein to distribute throughout the cell as GFP alone, consistent with its primarily cytosolic nature in biochemical studies. Therefore, eNOS targets into the Golgi region of NIH 3T3 cells via the first 35 amino acids, including N-myristoylation and palmitoylation sites, and its overall membrane association requires N-myristoylation but not cysteine palmitoylation. These results suggest a novel role for fatty acylation in the specific compartmentalization of eNOS and most likely, for other dually acylated proteins, to the Golgi complex.
منابع مشابه
Computational Prediction of the Effects of Single Nucleotide Polymorphisms of the Gene Encoding Human Endothelial Nitric Oxide Synthase
ABSTRACT           Background and Objective: Genetic variations in the gene encoding endothelial nitric oxide synthase (eNOS) enzyme affect the susceptibility to cardiovascular disease. Identification of the way these changes affect eNOS structure and function in laboratory conditions is difficult and time-consuming. Thus, it seems essential to ...
متن کاملInfluence of acylation of a Peptide corresponding to the amino-terminal region of endothelial nitric oxide synthase on the interaction with model membranes.
Covalent attachment of fatty acids to proteins is a common form of protein modification which has been shown to influence both structure and interaction with membranes. Endothelial nitric oxide synthase (eNOS) is dually acylated by the fatty acids myristate and palmitate. We have synthesized four peptides corresponding to the first 28 amino acids of the N-terminal region of eNOS. Besides the no...
متن کاملEXPRESSION OF INDUCIBLE NITRIC OXIDE SYNTHASE GENE (iNOS) STIMULATED BY HYDROGEN PEROXIDE IN HUMAN ENDOTHELIAL CELLS
Inducible nitric oxide synthase (iNOS) gene expresses a calcium calmudolin-independent enzyme which can catalyse NO production from L-arginine. The induction of iNOS activity has been demonstrated in a wide variety of cell types under stimulation with cytokines and lipopoly saccharide (LPS). Previous studies indicated that all nitric oxide synthases (NOS) activated in human umbilical vein endot...
متن کاملP-235: No Association of Endothelial Nitric Oxide Synthase (eNOS) -786T/C Polymorphism with Unexplained Recurrent Abortion in Iranian Women
Background: This is a case-control study to determine the relationship between endothelial nitric oxide synthase (eNOS) gene -786T/C polymorphism in women with unexplaiend recurrent abortion in comparison with healty women.Materials and Methods: 95 women with history of at least 2 unexplaiend recurrent abortion in the reproductive age range 20-35 years as patients group and 95 healty women (age...
متن کاملEffect of dexamethasone on the endothelin-1 (ET-1) and endothelial nitric oxide synthase (eNOS) genes expression during hepatic warm ischemia/reperfusion in rat
Background: Hepatic ischemia/reperfusion injury (I/RI) is a multifactorial pathophysiologic process which can lead to liver damage and dysfunction. This study examined the protective effect of dexamethasone on the gene expression of endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) and on the liver tissue damage during warm hepatic I/R. Materials and Methods: A total of 32 mal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
 
دوره 137 شماره
صفحات -
تاریخ انتشار 1997